Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jarrod J. M. Amoore and Cameron J. Kepert*

School of Chemistry, F11, University of Sydney, NSW 2006, Australia

Correspondence e-mail:
c.kepert@chem.usyd.edu.au

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.101$
Data-to-parameter ratio $=16.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Pyridylamino)pyridinium isophthalate

In the title salt, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-}$, the protonated 4, 4^{\prime} dipyridylamine and deprotonated isophthalic acid molecules are bound together in the crystal structure through $\pi-\pi$ stacking, $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}, \mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ and $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ interactions.

Comment

The title compound, (I), involved the co-crystalization of two different organic molecules. Co-crystalization of two or more molecules, one often being a carboxylic acid and the other a proton aceptor, has received increased interest in recent years (Aakeroy et al., 2003; Bhogala \& Nangia, 2003; Reddy et al., 2004; Du et al., 2005). Here, the asymmetric unit of the crystal structure comprises one protonated $4,4^{\prime}$-dipyridylamine molecule and one singly deprotonated isophthalic acid molecule (Fig. 1). The pyridine rings of the 4 -(4-pyridylamino)pyridinium cation do not lie in the same plane, but are instead twisted with respect to one another, the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$ torsion angle being 32.47 (11) ${ }^{\circ}$. The unprotonated pyridine rings of the cations are involved in $\pi-\pi$ stacking interactions [centroid-to-centroid distance $=3.7440(5) \AA$] with the isophthalate anions and with other unprotonated pyridine rings of adjacent cations [centroid-to-centroid distances $=$ 4.1992 (6) Å; Janiak, 2000]. Three O $\cdots \mathrm{H}-\mathrm{N}$ and $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}$ hydrogen-bonding interactions (Desiraju, 2002) link the molecules into a three-dimensional network (Figs. 2 and 3). There are no solvent molecules present in the crystal structure.

$+$

(I)

Experimental

Isophthalic acid was purchased commercially and 4,4'-dipyridylamine was synthesized according to literature methods (Zapf et al., 1998). Single crystals of the title salt suitable for X-ray crystallography were grown from a solution of 4,4'-dipyridylamine and isophthalic acid in deuterated methanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{~N}_{3} \mathrm{H}_{10}{ }^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}^{-} \\
& M_{r}=337.33 \\
& \text { Monoclinic, } P P_{1} /{ }^{\prime} n \\
& a=9.324(18) \AA \\
& b=15.134(3) \AA \AA \\
& c=11.655(2) \AA \AA \\
& \beta=107.78(3)^{\circ}(3)^{\circ} \AA^{3} \\
& V=1566.1(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 18 October 2005 Accepted 25 October 2005 Online 31 October 2005

Figure 1
View of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.

Data collection

Bruker SMART 1000 CCD diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick 1996) $T_{\min }=0.900, T_{\max }=0.98$
15761 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0457 P)^{2}\right. \\
\quad+0.7162 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.41 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.101$
$S=1.03$
3742 reflections
227 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	1.84	$2.7134(14)$	174
$\mathrm{O} 3-\mathrm{H} 3 A \cdots 1^{\text {ii }}$	0.84	1.83	$2.6720(14)$	178
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\text {iii }}$	0.88	1.94	$2.7987(13)$	166
Symmetry codes:	(i)	$-x,-y,-z+1 ;$	(ii)	$-x+1,-y+1,-z+1 ;$
$x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.				

All H atoms were positioned geometrically $(\mathrm{O}-\mathrm{H}=0.84, \mathrm{~N}-\mathrm{H}=$ 0.88 and $\mathrm{C}-\mathrm{H}=0.95 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 2
View of the crystal structure of (I), showing the cations and anions bound together by a combination of $\pi-\pi$ stacking and hydrogen-bonding interactions. Hydrogen bonds are drawn as dashed lines.

Figure 3
View of the hydrogen-bonding interactions in the crystal structure of (I). Hydrogen bonds are drawn as dashed lines.

ORTEP3 (Farrugia, 1997) and MERCURY (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: XCIF (Bruker, 2001).

References

Aakeroy, C. B., Beatty, A. M., Helfrich, B. A. \& Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159-165.
Bhogala, B. R. \& Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.
Bruker (1997). SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). XCIF. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Du, M., Zhang, Z.-H. \& Zhao, X.-J. (2005). Cryst. Growth Des. 5, 1199-1208.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Reddy, L. S., Nangia, A. \& Lynch, V. M. (2004). Cryst. Growth Des. 4, 89-94.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III \& Zubieta, J. (1998). Inorg. Chem. 37, 3411-3414.

